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The three-dimensional magnetohydrodynamics of ac helicity injection
in the reversed field pinch

F. Ebrahimi, ¥ S. C. Prager, J. S. Sarff, and J. C. Wright
University of Wisconsin-Madison, Madison, Wisconsin 53706

(Received 15 October 2002; accepted 2 January 2003

ac magnetic helicity injectiofalso known as oscillating field current drive, OFCBas been
proposed as a technique to sustain the plasma current in a reversed field pinch. The
three-dimensional, resistive magnetohydrodynamics computation is employed to examine the full
nonlinear dynamics of OFCD, including the behavior of plasma fluctuations and instabilities. The
three-dimensional results are also compared with one-dimensional classical and relaxed-state
modeling. In OFCD, helicity is injected by oscillating the toroidal and poloidal surface loop
voltages. This technique is able to sustain the plasma current, with the edge current mainly driven
directly by the OFCD-generated fields, and the core current driven by plasma fluctuations.
Fluctuations increase with OFCD, although the increase is concentrated mainly in one global, nearly
ideal, mode. ©2003 American Institute of Physic§DOI: 10.1063/1.1555622

I. INTRODUCTION present in the first term on the right-hand side. In dc electro-
) . . static helicity injection helicity is maintained by the second

Steady sustainment of the current in toroidal plasmasery \which represents the intersection of a field line with a

remains a challenge. For plasmas in which the current distrig tace held at a constant electric potential. Electrostatic he-

bution relaxes by internal processes, various technlquqﬁzity injection has been studied experimentally in

known as magnetic helicity injection have been SuggeStegpheromaléand spherical tokamaks?

for current sustainment. In such techniques, the resistive dis- |, 4¢ helicity injection the helicity is provided by oscil-

sipation of magnetic helicitfand plasma currentis bal- lating fields in the first term. In steady state,

anced by helicity injection, typically provided by voltages

applied at the plasma surface. Internal relaxation processes ——

are expected to enable current penetration to the core. In the ®:0,= WJ J-Bdy,

present paper, we examine the detailed dynamics of ac helic-

ity injection in the reversed field pincfRFP), investigating where the overbar denotes a time average over a cycle of the

both the effectiveness of the current drive and the responsescillating fields,é, and?, (the “hat” denotes an oscillating

()

of the fluctuations in the plasma. quantity. The oscillation in the poloidal flux is provided by
Magnetic helicity,K, is a measure of the knottedness of an oscillating surface toroidal loop voltage. Hence, if toroi-
the magnetic field lines, and is defined as dal and poloidal surface voltages are oscillated, with a 90
degree phase difference, then helicity is injected steadily,
K= f A-Bdv—d,¢,, (1)  eveninthe absence of a dc loop voltage. This technique was
suggested by Bevir and Grayo sustain the current in an

where A is the magnetic vector potential and the integralRFP. It has also been referred tofas ® pumping or oscil-
extends over the plasma volume. The second term represen@ing field current driv OFCD). We will here use the ac-
the linkage of toroidal flux within the plasmapg) with po- ~ ronym OFCD. The technique was shown to demonstrate a
loidal flux (¢,) that passes through the center of the torussmall amount of curren{about 5% of the totalin the
The second term is subtracted from the volume integral, a€T40-M RFP? with a phase dependence in agreement with
required to maintain gauge invarianté.The rate of change theory. However, plasma—wall interactions generated by the
of helicity for a resistive magnetohydrodynamitHD) oscillating plasma position precluded tests with larger volt-

plasma is ages.
K Considerations of helicity balance provide little informa-
J tion on the dynamics of the current drive. A somewhat more
—=2 —2| ®B-ds—2 | E-Bdy, 2 ST X e
ot P22 f f v @ complete view is obtained through examination of the effect

%of the applied voltages on the fields within the plasma, using
. ) ! . the mean-field paralléto the cycle-averaged mean magnetic
andu, is the toroidal loop voltage. Any technique to sustalnﬁeld) Ohm’s Iavs ¢ 4 g g
the plasma current must also maintain helicity constant in '
time. In the usual toroidal induction, as in a tokamak, helicity

dissipation is balanced by the dc toroidal loop voltage

(VgoX Boo)u+<\7><§>uz77_~]u: (4)

whereVy, and By are the oscillating velocity and magnetic
dElectronic mail: febrahimi@wisc.edu fields with poloidal and toroidal mode numbers=n=0, V
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andB are the fields wittm, n+0, and( ) denotes an average & 9lobal mode that is nearly idegdesonant at the extreme
over a magnetic surfac( ),=( )-BIB, whereB is the plasma edge The core-resonant tearing modes are not in-

cycle-averaged meal®,0) magnetic field. We see that there creased significantly. We summarize in Sec. VI.

are two dynamo-like current drive terms on the left-hand

side, one arising from the one-dimensional oscillating fieldd!- BASIC EQUATIONS

that occur at the OFCD frequencthe first term and one To understand the dynamics of OFCD both the tearing
that arises from nonaxisymmetric plasma fluctuations andluctuations and the oscillation of the mean quantities should
instabilities(the second terin In the absence of fluctuations be studied. Therefore, we model OFCD using both 1D and
(neglecting the second tejma current is driven by the sym- 3D computations. We employ the 3D resistive MHD code,
metric, oscillating fields. The oscillating radial velocity com- DEBS?’ to solve the compressible resistive MHD equations
bines with the oscillating magnetic field to produce a dcin periodic cylindrical geometry,

current. This current is confined to within a classical resistive

skin depth near the plasma surface, and decays to zero at the — =Sy xB- 5J,

plasma center. It is a classical effect, although one that is

absent in a plasma without flow. Considering thgh=Eg oV

X B/B?, the first term can also be written éEqy- Boo)/B. P = SpV-VV+SIXB+ V2V, (5)
Hence, the classical OFCD effect can also be viewed as a

time-averaged parallel component of the oscillating electric B=V XA, J=VXB,

field. . . . . where time and radius are normalized to the resistive diffu-
The OFCD technique relies upon magnetic fluctuatlonsSion timerr=4ma2/c?y, and the minor radiua, velocity to

to relax the current d_enS|ty profile. Fluctl_Jat|ons are genery . ajven velocityV,, and magnetic fiel@ to the magnetic
ated by the OFCD-driven edge curréttte first term on the

i i field on axisBy. S= 7r/ 7, is the Lundquist numbewhere
LHS), that then generate current in the plasma core via th%\za/VA), and v is the viscosity coefficient, which mea-

second term, the MHD dynamo. The original studies ofg oq the ratio of characteristic viscosity to resistivitye
fnagnetic Prandtl numbeiThe mass density is assumed to

be uniform in space and time. The resistivity profile has been

the fluctuations are treate_d as a hyperresist_ivity has beel,sen to resemble the experimental profilesreasing near
used to treat the 1D behavior of the plasma with OFCH. olasma edge 7= (1+9(r/a)2)2. Oscillating axial and

Three-dimensional MHD computation has been used t%zimuthal clectric fields are imposed at the wall
study spheromak formation by helicity injectidnand to P g

model electrostatic helicity injection in tokamalésThe im- :?zls'”(wt), Ee=§9|5|n(wt+q-lr(2), wheree, a.ndlsg a;e the )
plications for transport associated with helicity injection axia an_d az_|mut alac.amp itudes, respectively. The oscilla-
have also been investigat&t® tion period is required to be long compared to the plasma

In this paper we employ three-dimensional, resistive'elaxation  time (the hybrid tearing f[ime ) Scalerhl_/b”d
MHD computation to study the nonlinear dynamics of =~ V7R7A), and short compared to resistive diffusion time
OFCD. This permits us to address two key questions: what i§Thybrid < 70 < TR).
the effectiveness of OFCD as a current drive technique and
what is its effect on plasma fluctuations? The basic equationd!- ONE-DIMENSIONAL CLASSICAL PLASMAS
are introduced in Sec. Il. The classical OFCD effect, which  one-dimensional studies, in which all quantities depend

both through 1D computation and analytic quasilinear calcuysith OFCD, but in the absence of nonsymmetric MHD fluc-
lation. This calculation provides a benchmark to which they,ations. This allows us to evaluate the OFCD-driven cur-
additive effect of the fluctuations can be ComparEd. The efrent' concentrated in the outer region of the p|asma' that
fect of the fluctuations is considered first through alD lre-gccurs in the absence of MHD relaxation. The 1D calcula-
laxed state model, in which the effect of fluctuations is repjons are useful for comparison to 3D computation to high-
resented through an assumption that the plasma maintainsiight the additive effect of relaxation. In Sec. 1ll A we display
preferredJ; /B profile. This calculationSec. V) provides  computational solution to the 1D MHD equations; Sec. Ill B

predictions, including scaling of key quantities with Lun- contains an analytic quasilinear treatment for a simple 1D
dquist number, that can also be compared to the 3D complequilibrium.

tation. The full 3D results are presented in Sec. V, for Lun-
dquist numbers of T0and 5<10°. Investigation of the
cycle-averaged quantities reveals that the plasma current We employ the DEBS code with alt andz dependent
(and helicity can indeed be sustained by OFCD. Examina-fluctuations suppressed. To study the linear dynamic re-
tion of the surface-averaged quantities throughout a cyclgponse of both the mean and oscillating fields, low oscillat-
indicates that the plasma current oscillates substantially, aing field amplitudes have been imposed on a plasma that is
though the magnitude of the oscillation decreases with Luninitially current free 8,=0, B,=constant). The time-
dquist number. Plasma fluctuations increase significantlaveragedover a cyclé magnetic field profiles in steady-state
with OFCD; however the increase is concentrated mainly irare shown in Fig. 1. The axial field is little affected by the

with J,/B spatially constant® MHD computation in which

A. One-dimensional computations
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FIG. 3. Cycle-averaged dynamo-like teivigoX Bog), Vs radius, for the 1D

FIG. 1. Time-averaged profiles for axial and azimuthal magnetic fields.computation. The oscillation frequenay is 200rz* and 60@* for the

obtained in steady state from 1D computatios,%1.0,6,=0.1w solid and dashed lines, respectively. The solid line has three times higher

=600t ,S=10P). helicity injection rate. For both casds,=1.0 sin@t), E,=—0.1 cosft),
S=10.

small oscillating fields. The alteration in the azimuthal field
results from the cycle-averaged current density, shown ifhat occurs for a solid metal. However, the cycle-averaged
Fig. 2(a). The current density is localized to the outer regio”component arises from the cycle-averaged terivig(
of the plasma, penetrating a distance equal to the classicalg,),, a dynamo-like effect due to the classically pen-
skin depths=(7/w)*% The time dependence of the current erating oscillatory fields, similar to that reported in Ref. 18.
density throughout one cycle is shown in FigbR The os-  Thjs effect is proportional to the helicity injection rate
cillatory current density is similar to the classical penetration(wszsﬁ/w), as seen in Fig. 3.
At high oscillating field amplitudegabout 10 times
largen, the oscillatory behavior of the fields change. The

0.0003 ' ' ' ' electric field contains both higher harmonics and subharmon-
@) ics (low frequency components, as seen in Figgadand
0.0002 F 4(b). The subharmonic component yields a nonzero cycle-
averaged electric field that decays toward zero as the plasma
5 0.0001F approaches steady state. The cycle-averaged dynamo-like ef-
’ fect (VgoX Bgg)y, increases with the helicity injection rate;
however its structure remains unchanggdy. 5).
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FIG. 2. Radial profiles ofa) cycle-averaged parallel current densﬁy, (b)
Parallel current density at different times during one cyél® low ampli-
tude computation

FIG. 4. (a) Axial and (b) azimuthal electric fields vs time at radius
=0.89, respectively.
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B. Analytical calculation and quasilinear effects .
1.0x10™
From the 1D computation, we see that low amplitude
oscillating fields penetrate into the plasma with the OFCD 5 ox10-5
frequency while both higher and lower frequencies are gen- '
erated for higher amplitude@arge forcing amplitudes To
. . [0}
understand the time dependence of the fields, one-
dimensional, linear, resistive MHD equatiofigg. (5)] are e oxi0-5
analytically solved in cylindrical geometry. The partial dif- ' 00 02 04 06 08 1.0
ferential equations are solved for uniform magnetic fiBld r/a
=Byz, VpIO, no viscosity, with initial cond_mons!\%(r,O) FIG. 6. (a B} vs time at radiusr/a=0.8 (s,0=1.0s =010
=const, Ay(r,00=0 and boundary conditionsA;(a,t) =200.0rz,5=10%). (b) S(VBY) vs radius calculated analytically in 1D

=(—¢&,/w)cost), Aé(a,t) =(—ggg/w)sin(wt), where the for the same parameter in Fig.(8olid line).
“1” superscript denotes a linear oscillating quantity. The

equations for the vector potential and velocity fields can be

simplified as follows:

1 _ — €20 ”
as AL ()= —=cogwt)+ 2, by(t)Jo(\ar),
—=VIXB- VX VXA 6) w “=
ot K
(?Vl L %
P =—-V(B-B). 7 Bg_ngl Nnbp(1)J1(N,r), (10)

Equations(6) and (7) can be combined in the form of where
axial and azimuthal vector potentiahf, A}),
b,(t)=ap(w,w,)] @, SiN(wt) — w cog wt)

oAL AL 1 9A}
M Y ) ® +w exp — wnt)],
(11)
A, S’BS[ A Eﬂ_ﬁ% L0 9°A} (0.0 2e50 1
Az p | arZ v ar 12 Tat| ar? M@ @)=\ on 1) (02 (wp)?)
1 1
1@_ @} (9 = n)\ﬁ, and \,, are the zeros of,. Here, we have as-
roar o r? sumed uniform density and resistivity profilep= n=1).

Th lizati fth . is simil h The solution forB} consists of an oscillating part at the
e normalization of the equations is similar to the oneq-~p frequency and a transient decaying (&Y. 6a)].

used in Sec. Il. The partial differential equatidDE) with Equation(9) can be solved foAl and subsequently for* as
nonhomogeneous boundary condition for the toroidal vectog v '

potential [Eq. (8)] represents a driven resistive diffusion ollows:

equation. The PDE for the poloidal vector potentiat). (9)] o

consists of Alfven waves and resistively damped modes. The Vi(r,t)= E Cor(t)br(T) (12)
Laplace transform method can be applied to E§sand(9). = me

The solution forAl andB} can be written as an expansion of

eigenfunctiongBessel functions where
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0.030 ' ' ' Through the singt)exp(—w,t) combinations in time, a
nonzero time-averaged electric field is generated mainly at

0.020 high amplitudes when the contribution of the quasilinear
term becomes important. This electric field decays slowly on
0.010 a resistive diffusion time scale. A nonzero mean electric field
° is similarly seen in large amplitude 1D computatiqi®ec.
0.000 Il A) as well as the nonlinear 3D computations below. How-
ever, this electric field becomes small as the plasma gets
close to quasisteady state.
-0.010
-0020b.% . Ny Y T
380 385 3.90 395 4.00 IV. ONE-DIMENSIONAL RELAXED-STATE PLASMA

t/T
’ Section 1l described the one-dimensional MHD plasma

FIG. 7. B, atr/a=0.65(dasheglandr/a=0.94(solid) vs time, calculated  response to an applied oscillating electric field in the limit
numerically for the 1D model with the quasilinear term. where the driven current diffuses classically. In this section
we examine a different extreme, where turbulent diffusion
maintains a relaxed-state current profile at every instant in

Sey [~ wmcodwt) cogwnt) time. The distinctive feature of a relaxed-state plasma is a
Cn(t)= (2= ad) > L— , stationary uoJ- B/B2=\(r) profile shape, independent of
m m varying electrical boundary conditions. Small-scale fluctua-
1 )\ﬁq (13 tions are assumed to provide a turbulent emf in just the right
dm(r)= W[T(‘h()\mr)_?’\]l()\mr)) amount at each radius to maintain this prefexed) shape.
Bom The zero-pressure limit of a fully relaxed plasma with no
Am Ji(Nph) residual magnetic free energy is well known to bgr)
+ 50 Qo(Aml) = Jo(Amf)) — r—z} = constant, as described by Taylddowever, for the discus-

sion here)\(r) can be any partially relaxed profile which is

wm=SBy/\pAy, and\,, are the zeros of; (Bo=p=1).  nonuniform in space but stationary in tinfevith finite re-
The cycle-averaged [ XBj) effect can be obtained sidual magnetic free energyPlasma pressure may also be
from the analytical solutions, V{(r,t)xBg(r,t)  included for more realistic modeling if the pressure evolution
=2 0=1Cm(t) omlr) X Z_ 1 Nabn(t)J2(Nor).  Figure @b) s easily described, such as a constant-beta assumption.
shows S(VIB}) from the analytical calculations, which An experimental plasma operating with sufficiently
agrees with the 1D computatioffrig. 3). The sharp edge strong relaxation has a stationaxy(r) profile when aver-
feature in Fig. €b) results from the uniform resistivity pro- aged over relaxation process cycling, but the shape is typi-
file assumed in the analytical model and the absence of visally nonuniform. This behavior is also reproduced in 3D
cosity. In the 1D computation oMyyX Bog) (Sec. lll A), the  nonlinear MHD computation. Consequently relaxed-state
resistivity profile is exponential and the viscosity is finite. At modeling on time scales slow compared to the relaxation
high S, for arbitrary frequency and amplitudes, the secondime 7~ /S7a provides a way to predict plasma response
term cosff) in Ciy(t) [Eq. (13)] represents high frequency to a prescribed electric field at the plasma surface, especially
oscillations. These high frequency oscillations are alsavhen time-consuming nonlinear, three-dimensional MHD
present in 1D computatiofBec. 11l A) for the field solutions  computation is impractical or impossible. Particularly impor-
but dissipate at finite viscosity, and also dissipate due to theant is the highS limit which remains a challenge for com-
fluctuations in 3D computation. putational MHD, yet accessible in experimental plasmas. Re-

To understand the time response of the plasma to largixed state modeling also can be compared to the 3D
oscillating amplitudes, the quasilinear effect is investigateccomputation.
including f(r,t)=V;(r,t)XB}(r,t), as an inhomogeneous We proceed in Sec. IV A with a description of the re-
source to the homogeneous PDE #}. The 1D driven laxed state evolution model, including an example simula-
diffusion equation plus the quasilinear term is solved numerition of OFCD sustainment. Section IV B covers the scaling
cally using the Crank—Nicolson method. As shown in Fig. 7of the OFCD-induced current and field modulation ampli-
the time response is a combination of the OFCD frequencytudes for key parametef3; drive frequencyw, and the rela-
higher harmonics and a lower frequency which arises frontive strengths of the axial and poloidal electric field ampli-
the product of the exponential decaying component and thgides. Section IV C describes the time and space dependence
oscillation. The inhomogeneous solution can be found anaef the implied dynamo emf required to maintain a relaxed-
lytically as well, by definingAz(r,t)=3r_,d,(t)Jo(Nor),  state current profile throughout an OFCD cycle, a prelude to
where nowd,(t) has a different time dependence, which areSec. V.
the combination of the OFCD frequency, the harmonics,A Model for relaxed-state evolution
transient decaying solutions and the product of exponential”
decaying and the oscillations, sie, sin((w*wmyt), Despite implications for a complex, nonlinear, three-
sin(wt)exp(— w,t), exp wyt). dimensional evolutionthe topic of Sec. V, relaxed-state
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plasmas are easy to model because the mean current is pr  3[(a) gg (O
scribed. The instantaneous one-dimensiofi@ean-field ) 2 AW | N AT |
equilibrium is a solution of s 1w -1} |
’ - O HHHHHHHHHHHHHH A _15.5"{‘::)%0?'31::2)\-
VX B=\(r,t)B+BXVp/B2. (14) . WVWVWVWVWWWWUWWWVWW 9] \
For a relaxed-state plasma, the profile has a stationary -2 -23 :
. . . 0.00 0.05 0.10 0.15 0.20 05 1.0 15 20 25
shape, with the time and space dependencies separable t/Te ®

N(r,t)=No(t)Ay(r). Only the amplitude varies in time in FIG. 8. (a) Axial and poloidal . orch e relaxed

: PP ; ; . 8. (a) Axial and poloidal currents for an -sustained relaxed-state
thli (;noql_er:’ Spe?.lrledhbye;he Valu% a.t the (;nagne_tlc :XAS plasma withS=5x10°, w=2.85x10°r,, R/a=1.66, and relative loop
(r=0). The proiile shap ||(r)_ IS an Input determined By  \oage amplitudes ,= 14.5,. TheF—© trajectory is shown ir(b) rela-
theory or experimental behavior, for examplg,(r)=1 for tive to fully relaxed equilibria, for which\ =1 (dotted—dashed curyeThe
the fully relaxed state plasma. For results presented her@arameters for this relaxed-state case are identical to theSh&b-MHD
AH(I’) =1— (r/a)4 is chosen to mimic experimental REP study in Sgc. \% B_below, with _the surface voltages adjusted to produce the

- . : same maximunk=0.1. See Fig. 32.

plasmas(in particular MST current profiles averaged over
the sawtooth relaxation cydlelt also resembles the current

profile obtained in 3D MHD computation. Finite diamag- mayimum helicity injectioh must be specified, as well as
netic current is straightforwardly included in relaxed-statey;mensionless parameterS and R/a (cylinder length
modeling if the pressure evolution can be specif(edg_.,  =27R). Keeping in mind that ;= — d¢,/3t, Eq. (16) is
constant-beta assumptjorHowever, the zero-pressure limit oqjly solved forno(t), from which the magnetic equilib-
is adopted here to permit direct comparison with results in, " eyolution follows. For results here, fourth-order
Secs. Il and V. Sincg8<1, finite pressure typlca_lly intro- Runge—Kutta integration with 100 time steps per OFCD pe-
duces small changes and does not substantially impa¢t,q is used to time-advance the solution.

OFCD solut|on§. ) In stark contrast to the results in the preceding section,
_ The evolution of a relaxed-state plasma is fully deter-grcp systainment of a de current with relatively small su-
mined by a global magnetic energy balance, with the magpernosed ac modulation occurs when the plasma maintains a

netic field profiles given by Eq(14). From the Poynting ojaxeq state, as illustrated in Fig(ag This relaxed-state
theorem, the mag_netlc energy balance for the total plasmg, iation has the same set of parameters used 5B
volume can be written as X 10° 3D nonlinear MHD simulations described in Sec. VB

v l,— vl g=WIot+ Py, (15)  below (see Fig. 32 for referengeThe peak-to-peak axial

. . , . current modulation is~30%, while the poloidal current

wherel, is the axial(toroidal) plasma currentl, is the po- modulation is yet larger. Th& —© trajectory during an
loidal current in the axial field magnet surrounding theOFCD cycle is shown in Fig. ). This trajectory is con-
plasma,v, andv, are the one-turn axial gnd poIoi'daI loop strained to a well-defined curve unique to the choice of
voltages at the plasma surface respectively/dt is the A,(r). The 3D simulations in Sec. V display somewhat
rate-of-change of the magnetiplus generally thermglen- larger ac modulation amplitude and a more complicédted
ergy W|th|r|l_thehplaslma volur1|1e, arky, is t.he Ohmic dIbS|SI- — 0 limit cycle that circles near the relaxed-state curve. The
pation within the plasma volume. Equati¢h) resembles frequency for this set of parameters is probably near the

the description of power flow in an electrical circuit, hencemaximum allowable relative to the relaxation time scale
this type of modeling is often dubbed zero dimensional. Nevéw\/ﬁ_ 1.56)
R A_ . .

ertheless, a complete one-dimensional evolution of th
plasma is described by Eq$l4) and (15 with \y(r,t)
=No(t)A,(r), given specified values fay,(t) and v ,(t).
With the normalizations described in Sec(ékcept for time,
normalized instead te,), Eq.(15) can be written in dimen-
sionless form as

IW g

Ny ot
where® = upal,/2¢, andF= woRI1,/2¢, are the pinch and
reversal values, respectively, commonly used normalization
of the axial and poloidal current. The axial magnetic flux is In order for OFCD to have practical value, it is neces-
¢,. Dimensionles®, dW/d\q, F and® are functions only sary that the ac modulation amplitudes of the currents be
of Ag and the specified\(r). P, is additionally a function relatively small. It is therefore important to understand how
of the normalized resistivity profile, assumed stationary inthe modulation amplitudes vary with Lundquist numigr
this model. For comparison with the results in Secs. Il and Vthe drive frequencyw, aspect ratioR/a, and the relative
the same resistivity profilep(r)=7(0)[1+9(r/a)?’]?> is  amplitudes of the axial and poloidal loop voltages. For
used. relaxed-state modeling, the scaling of the modulation ampli-

To create an OFCD simulation, the drive frequency, am+tudes with these parameters is straightforwardly obtained by
plitudes, and relative phase of the loop voltagsst for  varying each individually, holding the others fixed. The re-

The data presented in the next section describe the scal-
ing of the ac modulation amplitude. These data were col-
lected from relaxed-state simulations similar to that shown in
Fig. 8 but with parameters varied to expose the parameter
dependence. In each simulation the surface loop voltage am-
plitudes are adjusted to produce a constant time-average
axial current and a specified maximum value for the reversal

a _
=2¢, gOv,~Fv 0) —S 'Py, (160 parameter during the OFCD cycfasually F = —0.1).

g. Scaling of the ac modulation amplitudes
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sults of this scaling analysis are reported in this section. The 0.06 0.8

ac modulation that occurs for a relaxed-state plasma prob, . #F osf ?

ably represents the lower bound for any real plasma. In Sec~ %%*[ a5 ~ ] e )\

V below, 3D nonlinear MHD analysis demonstrates OFCD ,§ BOAT By, aoa-a
with modulation amplitude larger than for a relaxed state, but™ 0.021 ] 0.2}

not grossly larger. Most importantly, sufficient relaxation oc- 5o (@ . ool ® .

curs in the 3D analysis. This is not an obvious outcome and 0 10 20 30 0 10 20 30
bolsters reliability in the scaling predictions from much sim- ¢ ¢

pler relaxed__State mOdelm,g' . . FIG. 9. Amplitudes of thda) fractional rms axial current modulation and
The scaling of the axial curr'ent deUIat!on IS Iar'gely (b) peak-to-peak reversal paramefemodulation for varying oscillator am-
controlled by the plasma’s unavoidable inductive reaction tlitude ratio =4,/ ,. Fixed parameters ar8=5x10", Q.=1, and

an oscillating electric field. The axial loop voltage requiredR/a=3. Note minimumsF,_ at ¢~ 10.

for OFCD is substantially larger than the resistive dc voltage

which would sustain the same time-average current. Froman ) - )

Ohm's law perspective, the voltage is dominantly inductiveP0SSiPle to normal experimental RFP conditions. This gen-

v,~L dl,/dt. Since the(toroida) inductancel = ugR, the eral procedure is repeated below, varying the other param-

relationship between the ac amplitude of the axial currentSters. _ ,

7., and the applied axial loop voltage amplituds,, is AIthoug? the axial current modulat!on gpproache; the
. A i expectedé~'< dependence only at largein Fig. 9a), this

roughly 0,= uoRwl, (the “hat” refers to the ac amplitude

ol diction for th i ‘ th " q scaling is shown first because the poloidal current
Asimple prediction for the scaling of the axial current modu- 4 jation—represented by th& modulation in Fig.

lation T, is formed by inserting the inductive response esti-g(p)—is minimum até~ 10, increasing rapidly at lowet.
mate for the loop voltage into a helicity balance. Equatingsmall ¢ (or largee ;) corresponds to a large driven toroidal
the time-average ac helicity injection rate in OFCD to thefield modulation. To help maintain axial field reversal,

steady-induction helicity injection rate yields =10 is chosen as the optimal loop voltage ratio. The sharp
b,0, . p0R increase.in the Bgloidaq current m0(_julation at sngaﬂrob_—
zzvmﬁzszQIZqﬁz, (170 ably spoils the£~'< scaling in the axial current modulation;

coupling between the axial and poloidal fields is not ac-
whereuv (, is the steady-inductiofresistive loop voltage and counted for in the derivation of Eq19).
fq is a form factor for the plasma resistance, essentially con- The scaling of the axial current modulation with Lun-
stant in this analysis. The overbar indicates a time-averagequist numbers, is shown in Fig. 108), which fits very well
(i.e., cycle-averagemean value. Inserting,= uoRwl, and  the expecteds '* dependence, except at lo#where the

definingé=0,/0,, modulation amplitude is largest. If OFCD is compatible with
2 plasma confinement requirements, the current modulation at
I, fo . a 1 fusion reactor parameters is only a few percent. For this rea-
I: :gfa w_TR- (18 son, the TITAN RFP reactor studi€semployed OFCD for
z

current sustainment. Whether or not the required relaxation
The frequency is best normalized to the hybrid timeturbulence adversely impacts energy confinement is a major
oNTATR= Qmngs With Q<1 the expected upper bound uncertainty in the viability of OFCD for fusion application.
requirement to permit sufficient relaxation over an OFCD  The poloidal current modulation dependence $ris
cycle. By these simple arguments, the fractional ac modulashown in Fig. 10b), again represented I#. The modulation

tion amplitude is predicted to scale as increases sharply at lo®, which probably defines the most
R e 121 , severe constraint on successful demonstration of OFCD,
I /1 ~S 0 i€V (Ria) =2 (19 both theoretically and experimentally. When the plasma re-

A similar argument for the poloidal current modulation is notsistance is high, the required voltage to sustain the current is

easily identified, although its scaling is equally important.
For example,(empirically) the loss of axial field reversal

i 0.3 o et = S8 L
typically causes an RFP plasma to become unstable and mu ,‘f-"
be avoided in operation. 0.2 2 &

The scaling of the modulation amplitudes with the loop ' & -4
voltage ratio¢ is shown in Fig. 9. The data points representa & o.1} sl
set of OFCD simulations, each with constant time-average - (b)_:'
current(but slightly different values All of the key param- 0.0 -8

: : : : 10 108 108 10" 10* 108 108 100

eters are the same in each simulation, excepgfaihe fixed s s

parameter values are listed in the figure caption. Since the _ _ _ _
poloidal current modulation varies considerably, the amp|i_FIG. 10. (a) The fractional rms axial current modulation amplitude &b

. . . . the reversal parameter variation as a functiorsofixed parameters ag
tudes of the |O_Op voltages are_adIUSted I_n each simulation té]lo, Q= 1, andR/a=3. The triangles irfb) are the time-average mean-
keep the maximum value df=—0.1. This guarantees the E while the squares on dotted curves are Fhescillation extremes. The

simulation has a reversed axial field at all times, as close asop voltages are adjusted to produce maxinfeim—0.1 in all cases.
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0.00 () ~Hhrhg o.00l®), e T _s|(@ , o LB e ,/\
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thd R/a' r/a ‘l“/(l
FIG. 11. The fractional rms axial current modulation for varyi@y fre-  FiG. 12. () The parallel electric field profiles for OFCleycle averaged

quency andb) aspect ratio. Fixed parameters &e5x10', §=10, Rla  and steady toroidal induction for the same parameters as in Fig. 8zThe
=3 (for frequency scan and Q,ng=1 (for aspect ratio scanThe dotted  profile (dotted—dashed curyés identical for both types of current sustain-
curve in(b) is the peak-to-peak-oscillation representing the poloidal cur- ment, i.e., the OFCD time-average current equals the steady-induction dc
rent modulation ¢ 20 only for illustratior). current in this comparison. The implied rms time-average dynamo profiles
(&=n3,—E,) are shown in(b). For OFCD, the rmst; is larger than its
straight time-average sin@ oscillates with large positive-to-negative ex-
high, which in turn produces excessive poloidal currentremes.
modulation, even for the optimal loop voltage ratje- 10
and maximum allowable frequendy .= 1. Very little ex-
perimental RFP operation occurs witk|>1. In practice, , , o o
OFCD cannot be expected viable wiB=1CF, a relatively  E and#J, is larger in OFCD, as shown in Fig. @3. This is
high limit. However, at reactor parameters, the poloidal curiMPOrtant because; is composed of turbulent quantities—
rent modulation is reasonable, and only now with the preseniPecifically VXX B in MHD—which can negatively impact
generation of RFP experimentsat 0.5 m andS>10f can  Plasma confinement. A large€;| implies larger fluctuation

tests of total current sustainment by OFCD be contemplatedmplitudes. TheS scaling of the fluctuation amplitudes is
The scaling of the modulation amplitudes with,,qand  therefore critical in determining the consistency of relaxation

R/a are shown in Fig. 11. The frequency scaling is as ex-2nd fusion plasma confinement. For steady induction, this
pected, whereas the aspect ratio scaling is not. Coupling b&caling is not particularly optimistic in either experinféur
tween the poloidal and axial fields most likely causes the3D MHD computatiorf? In principle OFCD could scale
scaling to diverge fromR/a) "2 as with the¢ scaling. The  differently, perhaps more favorably.

toroidal and poloidal current modulation amplitudes increase  Hybrid current sustainment—combining partial steady
and decrease together when Chanm thd' hence their induction with partial OFCD—prOVideS an intriguing pOSSi'

scalings are probably less sensitive to cross-field coupling. Pility for current profile control to minimize, . Steady in-
duction would support the core current while OFCD would

support the edge current. Relaxed-state modeling indicates
the time-average, is minimal across the radius when the
Although relaxed-state modeling does not provide a misupplied power is roughly equally split between steady in-
croscopic description of the relaxation mechanism, it doegjuction and OFCD. However, the rnisshown in Fig. 12b)
quantify the profile and time dependence of the emf requiredemains relatively large due to large positive-to-negative
in Ohm’s law to maintain a relaxed state. A comparison withswings during the OFCD cycle. At two times in each cycle,
steady induction provides insight into anticipated differenceshe instantaneous magnitude |&f| peaks at values up to
in the dynamo between OFCD and steady induction, the latex5-10 times larger than the cycle-averagje This behav-
having a well-developed understanding in 3D nonlinearior stems from the large loop voltage which is dominantly
MHD. inductive. Nevertheless hybrid sustainment will be interest-
To maintain a relaxed-state, in general parallel Ohm'sing to investigate in 3D MHD where the detailed relaxation
law must include an emf;, which balances the difference process could lessen these extremes.
between the parallel inductive electric field and resistive drag

7d—E=§,. (200 V. THREE-DIMENSIONAL COMPUTATION

core rather than the edge. Moreover, the mismatch between

C. Dynamo implications for an OFCD relaxed state

The detailed workings of; in 3D MHD is a topic in Sec. V The complete dynamics of OFCD are studied using the
below. In relaxed-state modeling, the radial profileskgf 3D, nonlinear, resistive MHD DEBS code. In the 3D simu-
=(VooX Bgg); and nJ; are known, shown in Fig. 18 for  lations the tearing fluctuations are present as well as the os-
both OFCD and steady inductioiThe profiles are cycle cillations of the symmetric quantities. We employ an aspect
averaged in the OFCD casd.he difference between these ratio (cylinder length to radius divided by of 1.66. The
profiles impliesé,. Steady induction and OFCD requiég  number of dominant spatial Fourier modes in the RFP scales
with essentially opposite radial structure. In steady inductionwith aspect ratio i~ 2R/a). Hence, computation at low as-
most of the current is everywhere provided by the appliedbect ratio permits the essential physics to be explored while
electric field except in the edge where the axial magnetifewer Fourier modes need to be evolfdwe examine
field is small. In OFCD, the time-averad® is zero at the OFCD at two different Lundquist numbers, *1@Gnd 5
magnetic axigwhere E,=E,) and maximum at the plasma x10°. An assessment of OFCD requires information on scal-
surface. Consequently relaxation must support current in thing with Lundquist number; for example, it is expected that
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— clycle—uvercllged

o

—1E ' ' I ' 3
0.20 0.25 0.30 0.35 0.40 0.45
t/Te

FIG. 15. Total axial plasma current vs time fe,=112, ¢,=11, 7,
=1.05x10°7,, S= 10°. When plasma reaches quasisteady state, the cycle-
averaged current,=2 is shown by the solid trace.

A N N B B B
0.0 0.2 0.4 0.6 0.8 1.0 the cycle-averaged terms in Ohm’s law, including the two
r dynamo effects—one arising from the spatially mean fields
FIG. 13. Radial profiles of the three terms in parallel Ohm's l&, (Y andB) oscillating at the OFCD frequency and one from
+S(VxB),= nJ, for a standard RFP plasma. The dynamo term includesthe tearing fluctuations. For a most detailed analysis, we then
contribution from them=0 andm=1 tearing modes for all the axial mode investigate the behavior of each of the terms in Ohm’s law,
numbersn (S=10°). and the magnetic fluctuation spectrum, through an OFCD
cycle. We discuss the results &=10° in Sec. VA andS

=5X10° in Sec. VB.
the oscillation of the total plasma current will decrease with 5
S, as indicated by the relaxed state model of Sec. IV. A. 5=10
For both values of Lundquist number, we first evolve the The target plasma for OFCD, shown in Fig. 13, was
plasma to a steady state in the absence of OFCD. This stagomputed with 147 radial mesh points, poloidal mode num-
dard RFP plasméat pinch paramete® =1.8) is evolved in  bersm=0-5, and axial mode numbers=—21-21. The
the presence of a constant boundary axial electric fieldarget plasma was sustained@t 1.8 with a helicity injec-
[E,(a)=constan}. It then forms the target plasma for {ion rateK = ¢,v,=50. If the axial electric field is suddenly
OFCD. The radial profiles for this standard, relaxed plasmag; to zeroat t=0.24rg in Fig. 14 then the current decays
are shown in Fig. 13, which displays the parallel components, 5 fraction of a resistive diffusion timéhe dashed curve
of the current, electric field, and dynamo effect generated by, study OFCD, at=0.24r; we impose boundary condi-
Ul tansfer surrent from the core o the edge, 1o countey 2" £1= 0SNG, E,=8 sint 7/2). This provides
the peaking of the current by the applied electrié field. heI|C|ty_|r_1]ec_t|9n r_ate 0fb 0 ¢/2=35. which is Iowler than
the helicity injection rate of the target. As seen in Fig. 14

| At s?rr]ne t_tlme_ gurmg dth? stge}dyl—st?t_e ]f.)hl?js? of ttr; FCD sustains the cycle-averaged current at about 2/3 of its
plasma, the time-independent axial €lectric eld 1S Set 1Q.;q \q)ye. However, the oscillations in the current are

Z€r0, and.the oscillating poI0|_daI and t_or0|dal e]ectrlc f'eldsgreater than 100%, causing the current to reverse direction.
that constitute OFCD are applied. We first examine the effec

on the total current and magnetic helicity. We then examine

1) L L A L B
-. cycle—averaged
“ ' - oFcD
E —— without OFCD
E Relaxed ] 10F E
E | N ]
\
“ | I M |
5 - -
0.0 0.2 0.4 0.6 0.8 1.0 L h “ V |
t/Ts | i
R (1] B N BN P B
FIG. 14. Total axial current vs time. The oscillating fielHs= 80 sin(t), 0.20 0.25 0.30 0.35 0.40 0.45
E9=8 sin(t+/2) are applied at=0.24rg (7,=1.05< 10°,). The bold t/7e

points indicate the cycle-averaged current. The dashed line is the exponen-
tially decaying current that occurs in the absence of OFEL(a) set to FIG. 16. Helicity vs time. The solid line with points shows the cycle-
zero att=0.24rg]. averaged helicity.
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400 T T T T 400 T T 1
(a) —. cycle—averaged
300 E
300 E
[ (Gt
200 of
200} E
100 E
L
fluctuating]
100 ] (IK/dt) g
0
-1F
0 —100 L )
0.20 0.25 0.30 0.35 0.40 0.45 0.2 0.3 0.4 0.5
t/Tr t/Ts
FIG. 17. (a) Total helicity dissipation rateK yc= 7/J-B dv vs time. The -2
solid line is the helicity dissipation before OFC@bout 50. The bold -05 00 05 10 15 20
points show the cycle-averaged total helicity dissipation rate, which at )

steady-state balances the OFCD helicity injection rate]- B dv~67. (b) . )
- A FIG. 19. F—0 trajectories fore,e,/w=2.1 (dashedl and &,8,/w=2.7
The two terms contributing to the total helicity dissipation rate, the symmet (solid). The driving frequency is the same for the two cases, The toroidal

ric mean partzJo Boodv. and the asymmetric fluctuating par/J field is more deeply reversed for higher helicity injection.
-Bdv (m, n#0) are shown. The thicker line indicates the fluctuating part.

helicity dissipation(Fig. 17 indicates large changes in the

If the OFCD helicity injection rate is increased, the Mean profiles during a cycle. o
cycle-averaged current increases and the relative oscillations 1€ choice of frequency is important for efficient current
decrease. We observe in Fig. 15 that if the OFCD helicityd”"e- The frequency should be low enough that edge current

injection rate is doubled, then the cycle-averaged current inc@n be transported by the tearing fluctuations into the plasma

creases by 20% and the current oscillations decrease by 1042"€, but high enough to avoid change of direction of the
The cycle-averaged helicity is also seen to be sustaiFigd total plasma current through a cycle. A frequency scan for a

16). However, the helicity reaches a value that is less than

the initial (by about 30%, despite the fact that the OFCD 8 . T .
helicity injection rate exceeds that of the target plagina —. OFCD
about 35%. This implies that the total helicity dissipation Sy —— without OFCD ]
rate nfJ-Bdv~67, including both symmetric oscillation
and asymmetric fluctuation contributions, increases with 4r ]
OFCD(Fig. 17). The two helicity dissipation rates are shown ,L ]
in Fig. 17b). In a steady-inductive RFP surrounded by a
close-fitting conducting shell, the time-averaged helicity dis- ok ]
sipation due to the tearing fluctuations is negligible. As it is
seen in Fig. 1i) the tearing fluctuating part of the helicity -2k ]
dissipation increases with OFQBhown by the thicker ling
resulting in a cycle-averaged value of a few percent of the —4 . L L
total helicity dissipation rate. Axial currenfFig. 15 de- (@ 0.2 0.3 t(}'fR 0.3 0.6
creases when the helicity dissipation due to the tearing fluc-
tuations increases. Due to the nonlinear plasma response,
both the axial current and the helicity dissipation rate are not 4 ' T oFeD
sinusoidal in time(Figs. 15 and 1) The sudden rise of the sk —— without OFCD }
o+ (s
1 1 N3 --: “‘ 3
0 9 oF 1 OF E
_1 3 =
L -1 qJu —1F B -k 3
-3 ! . .
-2 1 2t E 0.2 0.3 0.4 0.5 0.6
(b) t/Ts
-3 L L L L L -3 ' 1 ' .. . . .
> > FIG. 20. (a) Helicity and(b) axial current vs time when phase between axial
05 00 05 1.'30 5 20 25 ! 0 .1; 2 3 and poloidal oscillating fields is set to zer6<0). The decay oK andl,,

when ohmic axial electric field is set to zefwithout OFCD are shown
FIG. 18. F— 0 trajectories for two different period$a) 7,=1000r,, (b) with the dashed line. The bold points are the cycle-averaged quarifibs
7,=1500r,, (S=10°), wherer,=27/w. OFCD.
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FIG. 21. Parallel current density at two different times during a cycle, atr|G, 23. Cycle-averaged dynamo terrt@ from symmetric oscillations

maximum(solid line) and minimum® (dashed ling ¢,=112, ¢,=11, and

7,=1.05x 107, .

(VooX Boo); and (b) from the asymmetric tearing dynamo terfiéx B), .

given Lundquist number would therefore be of interest P€nds upon the ratio of the poloidal and toroidal oscillating

However it is presently infeasible due to the long computa2mPplitudes. At higher helicity injection rates arg/e, in
tional time required. At low frequency, when the driving pe- the range of 10—-15 %, the toroidal field reversal parameter,

riod is much longer than the plasma relaxation time scale, thE- 1S less positive and plasma maintains the reve(Sa.

plasma currenfand ®) changes sigiiFig. 18. Whether the
plasma maintains the reversal during the OFCD cycle de-

_2 1 L 1 L

FIG. 22. (a) Cycle-averaged =J,/B and(b) cycle-averaged parallel cur-
rent density,J,, profile without OFCD(dashedl and with OFCD(solid).
Since the total current is smaller with OFGBee Fig. 15 J, is smaller as

well.

00 0.2 04 06 08
r

1.0

5 T T T T (b)

4F T~ ===> Standard RFP

-1 1 ! 1 !

0.0 0.2 04 06 08
r

1.0

According to the helicity balance equation, the phase
between the axial and poloidal voltages for maximal helicity
injection is 6= 7/2 (Sec. ). We have also examined=0

and 6= — m/2. Figure 20 shows that both the cycle-averaged
helicity and the cycle-averaged current decay to zero as ex-
pected whers=0. The dashed line in Fig. 20 shows helicity
and current when the axial electric field is set to zémo
OFCD) and the solid line with bold points indicates the
cycle-averaged current with OFCD with=0. The OFCD
cycle-averaged current decays faster than the ohmic current
(dashed ling The opposite phases& — 7/2) leads to helic-

ity ejection and cycle-averaged helicity and current decay
more rapidly during the early cycles.

A large time variation of the parallel current densily,
occurs during an OFCD cycle, shown in Fig. 21 for maxi-
mum and minimum®. Current density is peaked in the in-
terior of the plasma whe® is maximum andF is most

T T
- M=1,n=—4
—= m=1,n=-3

-5

Wm,n

0.05 0.10 0.15 0.20 0.25
t/Tr

FIG. 24. Modal magnetic energ)h/\(,nyn=1/2f§r2(m,n) d®r) vs time for a
standard RFP. Thel,—4) and(1,—3) modes are the most dominant tearing
modes 6=10°, R/a=1.66).
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/ FIG. 27. Profiles of the equilibrium magnetic field3, and B,, andq
102 m=1,n=-4 profile for the linear calculation of thei=1, n=+2 edge-resonant mode.
1074 ]
e mm ]
107k = . . .
1o-10P = pected, the oscillations drive only a cycle-averaged edge cur-
10712 1

rent[Fig. 23a)]. The core current is sustained by the tearing

0.430 0.440 0.450 0.460 0.470 i
t/7 dynamo[Fig. 23b)].
- m=1,n=-2 During one cycle, the plasma is driven to a state which is

far from relaxed, with significant effect on fluctuations. In
the standard RFP the current density is controlled by the core
tearing modes, resonant within the reversal surface, with

0.430 0.440 0.450 0.460 70 mode numberm=1, n=—2 to —10, as shown in Fig. 24.

/7 The oscillating fields of OFCD broaden tlee profile and
FIG. 25. Time histories of magnetic energi , = 1/2/82,» d°r for the excite additional ques. Edge modes, re;onant outside the
dominant tearing modesyn'(,n):(1’+2)’(1’73)’(1’74)’(1’72) in an I'eVGI’SEU Surface, W|th|n:1, n:2, are eXClted, as We” as
OFCD-sustained plasma. The edge resonant modd, n=+2, is excited additional core modes with=1, n=—2, as shown in Fig.
by the oscillating fields and has the largest amplitude. 25. The edge-resonant mode develops the largest amplitude.
The edge modes become resonant as the reversal deep-
ens through a cycle, witlF reaching —2. To determine
negative. The OFCD period is in the range of the hybridwhether this mode is linearly unstable or nonlinearly driven
tearing time; thus, the current penetrates to the interior of thge compute the linear drive terms in the equation
plasma. The cycle-averagadr) profile is shown in Fig. 22. 1 B2
: S . 2
Nonzero_ parallel current densny on axis is evidence of the E—=SB’I[(BO'V)Vl—(Vl'V)Bo]+'", (21)
penetration of edge current into the core through the tearing at
mode dynamo effect. The time-averagedndJ, profiles of  \yhere the “1” subscript indicates a perturbea=1, n=2
the standard RFP plasma are also shown. , _quantity and a “0” subscript indicates a meé&h0) quantity.

The dynamics of this current relaxation can be investi- compute the volume integral of the LHS and RHS of Eq.
gated by analyzing the dynamo teriifeom both the sym-  51) e observe that during the sudden growth phase, the
rrletrE: oscillations VooX Bgg); and the tearing fluctuations 4 terms are equaFig. 26. Thus, the growth o=1, n
(VXB)] in the cycle-averaged parallel Ohm’s law. As ex- =2 mode is a linear instability and nonlinearity only affects

o
|
2N
T
o
g Y B B

10T T ] 1.0 1

[ 1 08f "

al . o O6F E
F 1 ]
L ] 04 F :-
Cln % ] 0.2¢ '
H % FRHS 1 0.0
4 . 00 02 04 06 08 1.0
: ‘-s‘#-“‘-‘-‘-\“““‘»"::;:::::.:, r
2r > ]
[ LHE
(o] I 1.0 ]

r pEEmE ] 0.8F :-
~2 : . 06} =
0.5725 0.5730 0.5735 0.5740 > '

t/Th 0.4¢f :'
02 3
FIG. 26. Them=1, n=+2 energy termgintegrated over radiysof Eq. 0.0 1
(21) vs time. The total energ{l HS) is shown by the solid line. The dia- 00 02 04 06 08 1.0
monds show the sum of the linear energy terms in the RHS. The growth r
period where the total energyHS) and linear energyRHS) overlap, is
marked by the shaded area. FIG. 28. Linear radial eigenfunctions of tine=1, n=+2 mode.
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Injection, Bjection creases, and the global edge-resonant modes suppress the
/ current density everywhere. Theprofiles at different times
E during one cycle, marked by the vertical lines in Fig. 29, are
; shown in Fig. 30. The first three profiléa)—(c) are during
: the helicity ejection phase, whilg)—(f) show the\ profiles
L during the injection phase. As is seen, therofile varies

W<§"/\\Z"<
from hollow (during the ejection phagdo peaked(during

K
ON L OO
s uwl

N=0 =N
L it
7

the injection phagewithin a cycle. Radial dynamo profiles
1.00f " during a cycle can provide better understanding of the cur-

- o.1o§:— M\AJ\W rent relaxation process from edge to the core region. Figure

0.01 31 illustrates the surface average dynamo term of the domi-

\
)
0.4860 0.470 0.480 0.490 0.5

s °  2%°  npant core modesm=1n=-2-3,—4,—5, at different
FIG. 29. Time histories of helicitK, reversal parametét, pinch param- times markeﬁ’ bX the vertical lines in Fig. 29' As seen, on
eter®, and magnetic fluctuatioB/B (S=10%). average théV X B), term suppresses current in the core re-

gion during the ejection phadé&igs. 31a) and 31b)] and

drives current on axis during the injection phéb@s. 31e)
the saturation and damping of this mode. A linear resistiveand 31f)].
MHD stability analysis has also been performed to obtain the s
growth rate and spatial structure of this mode. Linear evqu—B' S=5x%10
tion of the mode is studied using the DEBS cdgéth all Although OFCD is able to sustain the plasma current at
other modes suppressedquilibrium profiles are chosen to S=10°, the current oscillations are large. The relaxed state
resemble those of the deeply reversed phase of OF@®®  model of Sec. IV predicts that the current oscillations de-
27). The global eigenfunctions of te=1,n=+2 mode are  crease with Lundquist number. To investigate the effect of
shown in Fig. 28. The growth rate of the moder,,=0.1,is  higher Lundquist number on current oscillations and mag-
in the range expected for ideal MHD instability. netic fluctuations, we have performed a computatiorSat

The plasma experiences two phases of the magnetic flue=5x 10°. We have employed higher spatial resoluti@60

tuations, the helicity injection and ejection phasé®. 29.  radial mesh points, €m=<5 and—41=<n<41) to allow for
In the helicity injection phaseK(>0), the total plasma cur- more localized features that accompany higiSevalues.
rent (or ®) increases and core fluctuations transport edgé®hmic helicity injection is replaced by OFCD &+ 0.035
current into the core. In the helicity ejection phagéede- 7, as shown in Fig. 32). The current is sustained and the

A (ejection) A (injecton)

12 8[ ]
100 d

£ (O) 57( ) -
8_
6F 4t
4 - 2:
2F E
o]0 ot

OO N & O D
,

.0 0.2 0.4 0.6 0.8 1.0 .0 0.2 0.4 0.6 0.8 1.0
's r

FIG. 30. \ profiles for different times during one cycléor times marked with vertical lines in Fig. 29
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FIG. 31. Profiles of the surface-averaged dynamgtlyn<\~/><§)” including n=—2,—3,—4,-5, at different times during one cyclémes marked with
vertical lines in Fig. 29

oscillations are indeed reduced by about 50% relativs to The cycle-averagen profile is shown in Fig. 33. For the
=10°. The corresponding — ® trajectory is shown in Fig. same helicity injection rate, the cycle-averaged parallel cur-
32(b), where it is seen that the plasma maintains reversal forent density on axis is higher than tBe= 10° case, indicating
most of the cycle. that current penetrates more effectively into the plasma core
at higherS. Similar to theS=10° case, there are two phases,
the helicity injection(current drive phageand helicity ejec-

I ' —. OFCD cycle—averaged tion phase. In the helicity injection phase, the positive dy-
E —— STD RFP ] . .
: 3 namo term from the core tearing fluctuations, transfers the
3F 3 edge current into the core. Because of the excitation of the
ET ] edge-resonant modes, magnetic fluctuations level are en-
; ] hanced(about the same level =10 case during the
- 2r E ejection phase. The profiles during the injection and ejec-
tion phases are shown in Fig. 34. This profile varies from
; b 3 hollow (during the ejection phagéo peakedduring the in-
s ] jection phasgwithin a cycle.
Figures 3%a)—35(d) illustrates them=1 magnetic en-
of s s s ] ergy spectrum, at different times during the OFCD cycle.
0.00 0.05 ?)1—0,, 0-15 0.20 The corresponding profiles are shown in Figs. 89—36(d),
o5~ = T T T T 7
t ®) E 4 T T T T
o.or 7]
—o.s| 8 3
L. —1.0 —:
f ] < 2
—1.5 p
—2.0F — 1
—-2.5 s . L ]
0.5 1.0 1.5 2.0 2.5
8 O 1 1 1 1
_ , 00 02 04 06 08 10
FIG. 32. (a) Toroidal plasma currerit,, and(b) F— @ trajectory for OFCD- r

sustained plasma &=5X10° (e,=140, £,=16, andr,=2.85<10°7,).

The F— 0 limit cycle is shown by the solid curve. FIG. 33. Radial profile of cycle averaged(S=5x 10°).
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FIG. 34. \ profiles at four different times during OFCD cydlejection and injection phasess=5x 10°.

including the cycle-averagegl profile (shown by the thicker trum. Theq profile at this time is shown in Fig. 38). As

line) for comparison. The dominant core modes=1,n discussed earlier, when the plasma reversal starts to deepen,
=—-3,—4,—5,—6 can be seen in Fig. 89 with the mag- edge-resonant modes become linearly unstable and the domi-
netic fluctuation level about 0.1-2%. This spectrum is thenant modes move toward the positive part of the spectrum.
typical spectrum during the maximum current drive, maxi-The q profile on the edge becomes more negatjig.

mum O, and is similar to the standard inductive RFP spec-36(b)]. The linearly growingm=1, n=+2 mode is seen in

Fig. 35b). This figure shows the magnetic spectrum during
the growth of edge-resonant mode fluctuations. At this time
them=1, n=+ 2 fluctuation level is about 10% and the core

(m=1,n==3)

10-.r 1 ) )
i 13_25 (@) X mode Mm=1n=-3,—4,—5,—6) fluctuation level is about
=0 7f 1 0.1-1%. It can also been seen in Fig(@%hat the ampli-
18-9K L tudes of other edge-resonant modes 1, n=+3, +4 start
60 60 to increase to higher valug¢&—5 % during the peak of the
B/B. Theq profile for this spectrum is broader both on axis
1o-i_ = , and on the edgfgFig. 36,c)]. The spectrum after the decay of
1077 -
P oooF .
= 10‘13'— 3 a .
107 9L ]
60 50 1.0 o 1O &y
0.5E
Q.5
-2 0.0
10Z3F ] ANE
10 -
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FIG. 35. The evolution of magnetic energym:m=1/2foy(m:1Yn) ddr,
spectrum during OFCD cycleS&5%10°). The dominant ifh,n) modes FIG. 36. (a)—(d) are theq profiles for the spectrum&)—(d) in Fig. 35,
have also been specified. respectively. The thicker profile is the cycle-averageprofile.
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edge-resonant modes begins to return to the typical standagteater than that for standard Ohmic plasmas. We identify
RFP spectrum with the core dominant made-1, n=—-3.  two parts of the OFCD cycle. During the helicity injection
Figures 3%d) and 3&d) show the spectrum and tlggprofile  phase, the current density profile peaks and the tearing mode

at a time during the injection phase. dynamo drives current in the coffansporting current from
edge to the cope The fluctuation level is roughly equal to
VI. SUMMARY AND DISCUSSION that of the standard RFP. During the helicity ejection phase,

We have investigated the full nonlinear dynamics of New global modes appear that are resonant at the extreme
OFCD, a form of ac helicity injection, using 3D nonlinear plasma edge. These modes produce_a dynamp_ effect th?t
suppresses current everywhere. A linear stability analysis

MHD computation. Three-dimensional plasma fluctuations h that th d table in ol ith st
and instabilities in large part determine the effectiveness of ows that these modes are unstabie In plasmas with strong

OFCD and its influence on confinement. The full dynamics ield reversal(large, _negati_v_e t_oroidal magne_tic f.iEId at the
are compared with results from 1D models, previously invesplaSma surfage The instability is suppressed in highplas-

tigated. In a classical 1D plasma, devoid of nonaxisymmetrici‘rt:f";iS where the reversal is weak. Clearly, invesigations at yet

fluctuations, OFCD generates a steady-state current confinel he_rS values, beyond the scope of the present computa-
to within a resistive skin depth of the plasma surface. The'oM 1 needed. : o .
current is generated by the cycle-averaged dynamo—likeh A_n ar;aa for.;yrther stud):j|§ optllrr;:za.uqn olf OF.CD ;’l\"th
(VooX Bog), effect from the axisymmetric velocity and mag- the aim of providing current drive with minimal tearing fluc-

netic field oscillations. We also find that, at large amplitudetuat'ons' For example, is a steady-state RFP possible without

of the oscillating voltages, transient fields are generated the? ct(?re pz)lei,m?hcurrent a?g tthe attendarrl]t.n?rel:d for c?rgglgg—
persist for about a resistive diffusion time. uations ¢ ANOter area ot fLture research IS fhe use o

The effect of the fluctuations, or magnetic relaxation, hagor current profile control, rather than sustainment.
been incorporated in a 1D model by assuming that}f{&
profile maintains a preferred radial shape. This model revealdCKNOWLEDGMENT
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